Dataset Expocode 33HH20161101

Primary Contact Name: Sullivan, Kevin

Organization: NOAA/Atlantic Oceanographic & Meteorological Laboratory

Address: 4301 Rickenbacker Causeway

Phone: 305-361-4382

Email: Kevin.Sullivan@noaa.gov

Investigator Name: Wanninkhof, Rik

Organization: NOAA/Atlantic Oceanographic & Meteorological Laboratory

Address: 4301 Rickenbacker Causeway, Miami Fl, 33149

Phone: 305-361-4379

Email: Rik.Wanninkhof@noaa.gov

Dataset Funding Info: NOAA Climate Program Office; NOAA Ocean Acidification Program

Initial Submission (yyyymmdd): 20161117 Revised Submission (yyyymmdd): 20161117

Campaign/Cruise Expocode: 33HH20161101

Campaign/Cruise Name: HB1604-Leg4

Campaign/Cruise Info: AOML_SOOP_CO2, Autumn Bottom Trawl Survey

Platform Type:

CO2 Instrument Type: Equilibrator-IR or CRDS or GC

Survey Type: Research Cruise **Vessel Name:** R/V Henry B. Bigelow

Vessel Owner: NOAA Vessel Code: 33HH

Coverage Start Date (yyyymmdd): 20161101

End Date (yyyymmdd): 20161110 Westernmost Longitude: 71.4 W Easternmost Longitude: 66.5 W Northernmost Latitude: 44.5 N Southernmost Latitude: 41.1 N

Port of Call: Newport, RI

Variable Name: xCO2_EQU_ppm

Unit: ppm

Description: Mole fraction of CO2 in the equilibrator headspace (dry) at

equilibrator temperature (ppm)

Variable Name: xCO2_ATM_ppm

Unit: ppm

Description: Mole fraction of CO2 measured in dry outside air (ppm)

Variable Name: xCO2_ATM_interpolated_ppm

Unit: ppm

Description: Mole fraction of CO2 in outside air associated with each water analysis. These values are interpolated between the bracketing averaged good

xCO2 ATM analyses (ppm)

Variable Name: PRES EQU hPa

Unit: hPa

Description: Barometric pressure in the equilibrator headspace (hPa)

Variable Name: PRES_ATM@SSP_hPa

Unit: hPa

Description: Barometric pressure measured outside, corrected to sea level (hPa)

Variable Name: TEMP_EQU_C

Unit: Degree C

Description: Water temperature in equilibrator (°C)

Variable Name: SST_C

Unit: Degree C

Description: Sea surface temperature (°C)

Variable Name: SAL_permil

Unit: ppt

Description: Sea surface salinity on Practical Salinity Scale (o/oo)

Variable Name: fCO2_SW@SST_uatm

Unit: µatm

Description: Fugacity of CO2 in sea water at SST and 100% humidity (µatm)

Variable Name: fCO2_ATM_interpolated_uatm

Unit: µatm

Description: Fugacity of CO2 in air corresponding to the interpolated xCO2 at SST

and 100% humidity (µatm)

Variable Name: dfCO2_uatm

Unit: µatm

Description: Sea water fCO2 minus interpolated air fCO2 (µatm)

Variable Name: WOCE_QC_FLAG

Unit: None

Description: Quality control flag for fCO2 values (2=good, 3=questionable)

Variable Name: QC_SUBFLAG

Unit: None

Description: Quality control subflag for fCO2 values, provides explanation when

QC flag=3

Sea Surface Location: After sea water pump, ~3 m below sea surface

Temperature Manufacturer: Seabird, Inc.

Model: SBE 38

Accuracy: 0.001 (°C if units not given) **Precision:** 0.0003 (°C if units not given)

Calibration: Factory calibration

Comments: Manufacturer's Resolution is taken as Precision; Maintained by ship.

Sea Surface Salinity Location: In dry lab after a debubbler, next to CO2 system

Manufacturer: Seabird

Model: SBE 45

Accuracy: ± 0.005 o/oo **Precision:** 0.0002 o/oo

Calibration: Factory calibration

Comments: Manufacturer's Resolution is taken as Precision; Maintained by ship.

Atmospheric Location: On mast above the bridge at ~18 m above sea surface water

Pressure Normalized to Sea Level: yes

Manufacturer: Vaisala

Model: PTB220

Accuracy: ± 0.15 hPa (hPa if units not given) **Precision:** 0.01 hPa (hPa if units not given)

Calibration: Factory calibration

Comments: Manufacturer's Resolution is taken as Precision; Maintained by ship.

Atmospheric CO2

Measured/Frequency: Yes, 5 readings in a group every 3.5 hours

Intake Location: Mast above the bridge, ~18 meters above sea surface

Drying Method: Gas stream passes through a thermoelectric condenser (~5 °C) and then through a Perma Pure (Nafion) dryer before reaching the analyzer (90%

dry).

Atmospheric CO2 Accuracy: ± 0.5 µatm in fCO2_ATM Atmospheric CO2 Precision: ± 0.01 µatm in fCO2_ATM

Aqueous CO2 Equilibrator Design

System Manufacturer:

Intake Depth: 3 meters Intake Location: Bow

Equilibration Type: Spray head above dynamic pool with thermal jacket

Equilibrator Volume (L): 0.95 L (0.4 L water, 0.55 L headspace)

Headspace Gas Flow Rate (ml/min): 70 - 150 ml/min Equilibrator Water Flow Rate (L/min): 1.5 - 2.0 L/min

Equilibrator Vented: Yes

Equilibration Comments: Primary equilibrator is vented through a secondary

equilibrator.

Drying Method: Gas stream passes through a thermoelectric condenser (~5 °C) and then through a Perma Pure (Nafion) dryer before reaching the analyzer (90% dry).

Aqueous CO2 Sensor Details

Measurement Method: IR

Method details: details of CO2 sensing (not required)

Manufacturer: LI-COR

Model: 6262

Measured CO2 Values: xco2(dry)

Measurement Frequency: Every 140 seconds, except during calibration

Aqueous CO2 Accuracy: ± 2 µatm in fCO2_SW Aqueous CO2 Precision: ± 0.01 µatm in fCO2_SW

Sensor Calibrations:

Calibration of Calibration Gases: The analyzer is calibrated every 3.5 hours with field standards that in turn were calibrated with primary standards that are directly traceable to the WMO scale. The zero gas is ultra-high purity air.

Number Non-Zero Gas Standards: 4

Calibration Gases:

Std 1: JA02166, 232.80 ppm, owned by AOML, used every ~3.5 hours.

Std 2: JB03651, 306.46 ppm, owned by AOML, used every ~3.5 hours.

Std 3: JB03591, 409.69 ppm, owned by AOML, used every ~3.5 hours.

Std 4: JB03285, 565.58 ppm, owned by AOML, used every ~3.5 hours.

Std 5: 0.00 ppm, owned by AOML, used every ~17.0 hours.

Comparison to Other CO2 Analyses:

Comments:

Method Reference:

Pierrot, D., C. Neil, K. Sullivan, R. Castle, R. Wanninkhof, H. Lueger, T. Johannessen, A. Olsen, R. A. Feely, and C. E. Cosca (2009), Recommendations for autonomous underway pCO2 measuring systems and data reduction routines, Deep-Sea Res II, 56, 512-522.

Equilibrator Location: Inserted into equilibrator ~5 cm below water level

Temperature Sensor Manufacturer: Hart

Model: 1523

Accuracy: 0.015 (°C if units not given) **Precision:** 0.0003 (°C if units not given)

Calibration: Factory calibration

Comments: Resolution is taken as Precision.

Equilibrator Pressure Sensor **Location:** Attached to equilibrator headspace. Differential pressure reading from Setra 239 attached to the equilibrator headspace is added to the pressure reading from the LICOR, which is measured by an external Setra 270 connected to the exit

of the analyzer.

Manufacturer: Setra

Model: 270

Accuracy: 0.15 (hPa if units not given) **Precision:** 0.015 (hPa if units not given)

Calibration: Factory calibration

Comments: Manufacturer's Resolution is taken as Precision.

Additional Information

Suggested QC flag from Data Provider: NA

Additional Comments: The analytical system behaved fine throughout the cruise. During the intervals of YearDay 306.86 - 308.67 and 312.98 - 314.30, the water flow sensor was very variable and read zero often. Data from the various temperature sensors and from the CO2 analyzer do not confirm low/no water flow. The flow sensor was probably not operating reliably, even though seawater was flowing. There were reports of jelly fish in the pumping system, so it is possible that the water flow sensor was fouled. There were multiple small gaps in the ship's sensors. The barometric pressures were estimated by subtracting 1.4 mbar from the Licor Pressure; [the difference between the LICOR and barometric pressures was 1.45 (+/-0.26) mbar, n=11827, for legs 3-4]. The SSTemperatures were estimated by subtracting 0.41 deg C from the Equilibrator temperature; [the difference between the Equilibrator and SSTemperatures was 0.41 (+/-0.06) deg C, n=12291, for legs 3-4]. The salinity values were interpolated from surrounding good data. Original Data Location: http://www.aoml.noaa.gov/ocd/ocdweb/bigelow/bigelow introduction.html

Citation for this Dataset:

Other References for this Dataset: